Journal Information
Vol. 7. Issue 4.
Pages 248-254 (July - August 2011)
Share
Share
Download PDF
More article options
Vol. 7. Issue 4.
Pages 248-254 (July - August 2011)
Full text access
Implications of the new etiophatogenic approach in the classification of constitutional and genetic bone diseases
Implicaciones del nuevo enfoque etiopatogénico en la clasificación de las enfermedades constitucionales y genéticas del hueso
Visits
5278
Antonio Morales Piga
Corresponding author
amorales@isciii.es

Corresponding author.
, Verónica Alonso Ferreira, Ana Villaverde-Hueso
Instituto de Investigación de Enfermedades Raras, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
This item has received
Article information
Abstract

Recent years have seen an unprecedented increase in the knowledge and understanding of biochemical disturbances involved on constitutional bone disorders. Recognition of the genetic background as the common cause of these diseases prompted the substitution of the term “constitutional” by “genetic”, in referring to them. Understanding physiopathological bases by finding out the altered metabolic pathways as well as their regulatory and control systems, favours an earlier and more accurate diagnosis based on interdisciplinary collaboration. Although clinical and radiological assessment remains crucial in the study of these disorders, ever more often the diagnosis is achieved by molecular and genetic analysis. Elucidation of the damaged underlying molecular mechanisms offers targets potentially useful for therapeutic research in these complex and often disabling diseases.

Keywords:
Molecular alterations
Bone genetic diseases
Osteochondrodysplasia
Resumen

El avance en el conocimiento de las alteraciones bioquímicas que causan las enfermedades constitucionales óseas no tiene precedentes. La constatación de que su característica esencial es el trasfondo genético común a todas ellas ha dado lugar a una propuesta de alcance: sustituir el término «constitucionales» por «genéticas» para referirse a estas entidades. La comprensión de los mecanismos fisiopatológicos implicados, identificando el punto exacto de la vía metabólica alterada y sus sistemas de regulación y control, facilita realizar un diagnóstico preciso, basado en la colaboración interdisciplinar, en un tiempo muy inferior del que requería el enfoque tradicional. Además, aunque la correcta valoración de las manifestaciones clínicas y radiológicas sigue siendo crucial, el diagnóstico de certeza se basa cada vez con mayor frecuencia en la aplicación de las nuevas técnicas de análisis genético y molecular. Por último, el esclarecimiento de las complejas alteraciones subyacentes a estos trastornos descubre unas dianas moleculares de gran utilidad potencial en la investigación terapéutica de unas enfermedades que a menudo limitan de manera notable la calidad de vida y que, casi sin excepciones, todavía carecen de un tratamiento eficaz.

Palabras clave:
Alteraciones moleculares
Enfermedades óseas genéticas
Osteocondrodisplasias
Full text is only aviable in PDF
References
[1.]
F. Collado Otero.
Displasias óseas.
Patología infantil estructurada. Bases fisiopatológicas del diagnóstico tratamiento, Ediciones Norma, (1974),
[2.]
A.C. Offiah, C.M. Hall.
Radiological diagnosis of the constitutional disorders of bone. As easy as A, B, C?.
Pediatr Radiol, 33 (2003), pp. 153-161
[3.]
D. Krakow, D.L. Rimoin.
The skeletal dysplasias.
Genet Med, 12 (2010), pp. 327-341
[4.]
A. Morales-Piga, F.S. Kaplan.
Osteochondral diseases and fibrodysplasia ossificans progressiva.
Rare diseases epidemiology, pp. 335-348
[5.]
N.R. Butler.
The classification and registration of bone displasias.
Postgrad Med J, 53 (1977), pp. 427-428
[6.]
V.A. McKusick, C.I. Scott.
A nomenclature for constitutional disorders of bone.
J Bone Joint Surg (Am), 53 (1971), pp. 978-986
[7.]
International Working Group on Constitutional Diseases of Bone.
International nomenclature of constitutional disorders of bone. Revision, May 1977.
J Pediat, 93 (1978), pp. 614-616
[8.]
International Working Group on Constitutional Diseases of Bone.
International nomenclature of constitutional diseases of bone. Revision, May 1983.
Ann Radiol (Paris), 26 (1983), pp. 457-462
[9.]
International Working Group on Constitutional Diseases of Bone.
International classification of osteocondrodisplasias.
Am J Med Genet, 44 (1992), pp. 223-229
[10.]
International Working Group on Constitutional Diseases of Bone.
International nomenclature and classification of osteocondrodisplasias (1997).
Am J Med Genet, 79 (1998), pp. 376-382
[11.]
C. Hall.
International Nosology and Classification of Constitutional Disorders of Bone (2001).
Am J Med Genet, 113 (2002), pp. 65-77
[12.]
A. Superti-Furga, S. Unger.
and the Nosology Group of the International Skeletal Displasia Society. Nosology and classification of genetic skeletal disorders: 2006 revision.
Am J Med Genet, 143A (2007), pp. 1-18
[13.]
D.L. Rimoin.
Molecular defects in the condrodisplasias.
[14.]
J. Myllyharju, K.I. Kivirikko.
Collagens and collagens related diseases.
Ann Med, 33 (2001), pp. 7-21
[15.]
D.O. Sillence, A. Senn, D.M. Danks.
Genetic heterogeneity in osteogenesis imperfecta.
J Med Genet, 16 (1979), pp. 101-116
[16.]
P.H. Byers.
Brittle bones-fragile molecules: disorders of collagen gene structure and expression.
Trends Genet, 6 (1990), pp. 293-300
[17.]
D.J. Prockop, H. Kuivaniemi, G. Tromp.
Molecular basis of ostogenesis imperfecta and related disorders of bone.
Clin Plast Surg, 21 (1994), pp. 407-413
[18.]
K. Walter, M. Tansek, E.S. Tobias, S. Ikegawa, P. Coucke, J. Hyland, et al.
COL2A1–related Skeletal Dysplasias with predominant Metaphyseal involvement.
Am J Med Genet, 143A (2007), pp. 161-167
[19.]
G. Nishimura, N. Haga, H. Kitoh, Y. Tanaka, T. Sonoda, M. Kitamura, et al.
The Phenotypic Spectrum of COL2A1 Mutations.
Hum Mutat, 26 (2005), pp. 36-43
[20.]
G.A. Wallis, B. Rash, B. Sykes, J. Bonaventure, P. Maroteaux, B. Zabel, et al.
Mutations within the gene encoding the alpha 1 (X) chain of tipo X collagen (COL10A1) cause metaphyseal condroplasia tipo Schmid but not several other forms of metaphyseal condroplasia.
J Med Genet, 33 (1996), pp. 450-457
[21.]
S. Unger, J.T. Hecht.
Pseudoacondroplasia and múltiple epiphyseal displasia: new etiologic developments.
Am J Med Genet, 106 (2002), pp. 244-250
[22.]
M.D. Brigss, G.R. Mortier, W.G. Cole, L.M. King, S.S. Golik, J. Bonaventure, et al.
Diverse mutations in the gene for cartilage oligomeric matrix protein in the pseudoachondroplasia-multiple epiphyseal dysplasia disease spectrum.
Am J Hum Genet, 62 (1998), pp. 311-319
[23.]
K.L. Chapman, G.R. Mortier, K. Chapman, J. Loughlin, M.E. Grant, M.D. Briggs.
Mutations in the region encoding the von Willebrand factor A domain of matrilin-3 are associated with multiple epiphyseal dysplasia.
Nat Genet, 28 (2001), pp. 393-396
[24.]
E. Arikawa-Hirasawa, W.R. Wilcox, Y. Yamada.
Dyssegmental displasia. Silverman-Handmaker tipo: unexpected role of perlecan in cartilage development.
Am J Med Genet, 106 (2002), pp. 254-257
[25.]
L. Gleghorn, R. Ramesar, P. Beighton, G. Wallis.
A Mutation in the variable repeat region of the aggrecan gene (AGC1) causes a form of spondyloepiphyseal dysplasia associated with severe, premature osteoarthritis.
Am J Hum Genet, 77 (2005), pp. 484-490
[26.]
S.W. Tompson, B. Merriman, V.A. Funari, M. Fresquet, R.S. Lachman, D.L. Rimoin, et al.
A recessive skeletal dysplasia. SEMD aggrecan type, results from a missense mutation affecting the C-type lectin domain of aggrecan.
Am J Hum Genet, 84 (2009), pp. 72-79
[27.]
E. Mornet, A. Taillandier, S. Peyramaure, F. Kaper, F. Muller, R. Brenner, et al.
Identification of fifteen novel mutations in the tissue-nonspecific alkaline phosphatase (TNSALP) gene in European patients with severe hypophosphatasia.
Eur J Hum Genet, 6 (1998), pp. 308-314
[28.]
U. Kornak, A. Schulz, W. Friedrich, S. Uhlhaas, B. Kremens, T. Voit, et al.
Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis.
Hum Mol Genet, 9 (2000), pp. 2059-2063
[29.]
A. Frattini, P.J. Orchard, C. Sobacchi, S. Giliani, M. Abinun, J.P. Mattson, et al.
Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis.
Nat Genet, 25 (2000), pp. 246-343
[30.]
U. Kornak, D. Kasper, M.R. Bösl, E. Kaiser, M. Schweizer, A. Schulz, et al.
Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man.
Cell, 104 (2001), pp. 205-215
[31.]
P.J. Venta, R.J. Welty, T.M. Johnson, W.S. Sly, R.E. Tashian.
Carbonic anhydrase II deficiency syndrome in a Belgian family is caused by a point mutation at an invariant histidine residue (107 His−Tyr): complete structure of the normal human CA II gene.
Am J Hum Genet, 49 (1991), pp. 1082-1090
[32.]
A. Superti-Furga, A. Rossi, B. Steinmann, R. Gitzelmann.
A condroplasia family produced by mutations in the diastrophic displasia sulfate transporter gene: genotipo/phenotipo correlations.
[33.]
B. Franco, G. Meroni, G. Parenti, J. Levilliers, L. Bernard, M. Gebbia, et al.
A cluster of sulfatase genes on Xp22.3: mutations in chondrodysplasia punctata (CDPX) and implications for warfarin embryopathy.
Cell, 81 (1995), pp. 15-25
[34.]
D. Krakow, J. Vriens, N. Camacho, P. Luong, H. Deixler, T.L. Funari, et al.
Mutations in the gene encoding the calcium-permeable ion channel TRPV4 produce spondylometaphyseal dysplasia. Kozlowski type and metatropic dysplasia.
Am J Hum Genet, 84 (2009), pp. 307-315
[35.]
W.S. Hou, D. Bromme, Y. Zhao, E. Mehler, C. Dushey, H. Weinstein, et al.
Characterization of novel cathepsin K mutations in the pro and mature polypeptide regions causing pycnodysostosis.
J Clin Invest, 103 (1999), pp. 731-738
[36.]
A.K. Gedeon, A. Colley, R. Jamieson, E.M. Thompson, J. Rogers, D. Sillence, et al.
Identification of the gene (SEDL) causing X-linked spondyloepiphyseal dysplasia tarda.
Nat Genet, 22 (1999), pp. 400-404
[37.]
S. Kitanaka, K. Takeyama, A. Murayama, T. Sato, H. Okumura, M. Nogami, et al.
Inactivating mutations in the 25-hydroxyvitamin D3 1α-hydroxylase gene in patients with pseudovitamin D–deficiency rickets.
N Engl J Med, 338 (1998), pp. 653-661
[38.]
M.R. Hughes, P.J. Malloy, D.G. Kieback, R.A. Kesterson, J.W. Pike, D. Feldman, et al.
Point mutations in the human vitamin D receptor gene associated with hypocalcemic rickets.
Science, 242 (1988), pp. 1702-1705
[39.]
J.L. Patten, D.R. Johns, D. Valle, C. Eil, P.A. Gruppuso, G. Steele, et al.
Mutation in the gene encoding the stimulatory G protein of adenylate cyclase in Albright's hereditary osteodystrophy.
N Engl J Med, 322 (1990), pp. 1412-1419
[40.]
E. Schipani, C.B. Langman, A.M. Parfitt, G.S. Jansen, S. Kikuchi, S.W. Kooh, et al.
Constitutively activated receptors for parathyroid hormone and parathyroid hormone-related peptide in Jansen's metaphyseal chondroplasia.
N Engl J Med, 335 (1996), pp. 708-714
[41.]
The HYP consortium 1995.
A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets.
Nat Genet, 11 (1995), pp. 130-136
[42.]
Y. Sabbagh, A.O. Jones, H.S. Tenenhouse.
PHEXdb, a locus-specific database for mutations causing X-linked hypophosphatemia.
[43.]
The ADHR Consortium.
Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23.
Nat Genet, 25-6 (2000), pp. 345-348
[44.]
M.R. Passos-Bueno, W.R. Wilcox, E.W. Jabs, A.L. Sertie, L.G. Alonso, H. Kitoh.
Clinical spectrum of fibroblast growth factor receptor mutations.
[45.]
A.O. Wilkie.
Craniosynostosis: genes and mechanisms.
Hum Mol Genet, 6 (1997), pp. 1647-1656
[46.]
M. Le Merrer, F. Rousseau, L. Legeai-Mallet, J.-C. Landais, A. Pelet, J. Bonaventure, et al.
A gene for acondroplasia-hypocondroplasia maps to chromosome 4p.
Nat Genet, 6 (1994), pp. 318-321
[47.]
M. Velinov, S.A. Slaugenhaupt, I. Stoilov, C.I. Scott, J.F. Gusella, P. Tsipouras.
The gene for acondroplasia maps to the telomeric region of chromosome 4p.
Nat Genet, 6 (1994), pp. 314-317
[48.]
G.A. Bellus, I. McIntosh, A.E. Smith, A.S. Aylsworth, I. Kaitila, W.A. Horton, et al.
A recurrent mutation in the tyrosine kinase domain of fibroblast growth factor receptor 3 causes hypocondroplasia.
Nat Genet, 10 (1995), pp. 357-359
[49.]
A.E. Hughes, S.H. Ralston, J. Marken, C. Bell, H. MacPherson, R.G. Wallace, et al.
Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis.
Nat Genet, 24 (2000), pp. 45-48
[50.]
P.I.A. Hermanns, B. Lee.
Transcriptional dysregulation in skeletal malformation syndromes.
Am J Med Genet, 106 (2002), pp. 258-271
[51.]
T. Wagner, J. Wirth, J. Meyer, B. Zabel, M. Held, J. Zimmer, et al.
Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9.
Cell, 79 (1995), pp. 1111-1220
[52.]
C. Huber, B. Oule's, M. Bertoli, M. Chami, M. Fradin, Y. Alanay, et al.
Identification of CANT1 mutations in desbuquois dysplasia.
Am J Hum Genet, 85 (2009), pp. 706-710
[53.]
G.M. Duncan, C. McCormick, F. Tufaro.
The link between heparan sulfate and hereditary bone disease: finding a function for the EXT family of putative tumor suppressor proteins.
J Clin Invest, 108 (2001), pp. 511-516
[54.]
M. Ridanpaa, Van Eenennaam, K. Pelin, R. Chadwick, C. Johnson, B. Yuan, et al.
Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia.
Cell, 104 (2001), pp. 195-203
Copyright © 2011. Sociedad Española de Reumatología and Colegio Mexicano de Reumatología
Idiomas
Reumatología Clínica (English Edition)
Article options
Tools
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?