Editorial

Utility and Future Direction of Echography in the Diagnosis of Giant Cell Arteritis

Utilidad y futuro de la ecografía en el diagnóstico de la arteritis de células gigantes

Eugenio de Miguel

Servicio de Reumatología, Hospital Universitario La Paz, Madrid, Spain

The progress of medicine is based on continuous change. This rate of change has accelerated in the past decades and has improved the precision and validity of its procedures, in addition to centering attention on the patient and in being cost-effective. These keystones, validity, patient satisfaction, and cost reductions are the basis of the thoughts that will be laid out as follows in order to evaluate the usefulness and future of echography in the diagnosis of giant cell arteritis (GCA).

The diagnosis of GCA is fundamentally based on the criteria proposed by the American College of Rheumatology (ACR) published in 1990 and on a biopsy of the temporal artery. Experts tend to be satisfied by these criteria but some vocal critics have pointed out its possible weaknesses. Therefore, in spite of the fact that the diagnosis of GCA can be considered satisfactory, there is a margin for improvement in order to reach excellence.

The ACR criteria are meant for classification, but in daily clinical practice they are employed as diagnostic guides. In principle, the ACR criteria seem valid; in their original publication they reach a sensitivity of 93.5% and a specificity of 91.2%, numbers that leave most clinicians satisfied. However, several articles have discussed the results that led to the origin of these criteria. The problem lies in the fact that the sensitivity and specificity of any test depends on the sensitivity prior to the test. The results of the ACR criteria come from a vasculitis clinic and the sensitivity and specificity calculations were performed in this type of patients, not in those in a general rheumatology clinic who would be expected to have a lower probability prior to the test or in atypical patients in which the probability is even lower. In that tenor, according to Rao et al., who applied these criteria in a general rheumatology clinic, sensitivity reached 75%, with a specificity maintained at 92%, but with a positive predictive value (PPV) of only 29%. PPV points to the probability of having the disease if the results of the criteria employed are positive. In summary, we would treat our patients with a large dose of steroids with a 29% chance of being right, something that obviously is uncomfortable for any clinician.

Fortunately, this low probability is due to the fact that the first 4 criteria of the ACR are very sensitive but hardly specific; therefore the need for a fifth criteria, biopsy, in order to reinforce the specificity of the diagnosis.

To this point it would seem that the biopsy offers the diagnostic solution in this disease. But the biopsy also has its weaknesses; it is efficient when the result is positive leading to the acceptance of the fact that its specificity and PPV is 100%; the problem is its low sensitivity, around 60%. As we know, sensitivity indicates the probability of correctly classifying an individual as sick. The number of recognized temporal artery biopsy false negatives oscillates between 9% and 44%, but when this is limited to patients with GCA, biopsy can be negative in up to 68% of cases according to the literature. The sources of variability in the negative cases are mainly biopsies between 9% and 44%; sampling inadequacy, poor microscopic techniques, and second biopsy only provides 3%-10% of positive results, confirming the need for a fifth criteria, biopsy, in order to reinforce the specificity of the diagnosis.

The results of the meta-analysis of temporal artery biopsies shows a sensitivity of 60.3% and a specificity of 99.5% with a PPV of 99.8%. The biopsy also has its weaknesses; it is reliable when the result is positive leading to the acceptance of the fact that its specificity and PPV is 100%; the problem is its low sensitivity, around 60%. As we know, sensitivity indicates the probability of correctly classifying an individual as sick. The number of recognized temporal artery biopsy false negatives oscillates between 9% and 44%, but when this is limited to patients with GCA, biopsy can be negative in up to 68% of cases according to the literature. The sources of variability in the negative cases are mainly biopsies between 9% and 44%; sampling inadequacy, poor microscopic techniques, and second biopsy only provides 3%-10% of positive results, confirming the need for a fifth criteria, biopsy, in order to reinforce the specificity of the diagnosis.

The biopsy also has its weaknesses; it is reliable when the result is positive leading to the acceptance of the fact that its specificity and PPV is 100%; the problem is its low sensitivity, around 60%. As we know, sensitivity indicates the probability of correctly classifying an individual as sick. The number of recognized temporal artery biopsy false negatives oscillates between 9% and 44%, but when this is limited to patients with GCA, biopsy can be negative in up to 68% of cases according to the literature. The sources of variability in the negative cases are mainly biopsies between 9% and 44%; sampling inadequacy, poor microscopic techniques, and second biopsy only provides 3%-10% of positive results, confirming the need for a fifth criteria, biopsy, in order to reinforce the specificity of the diagnosis.

Fortunately, this low probability is due to the fact that the first 4 criteria of the ACR are very sensitive but hardly specific; therefore the need for a fifth criteria, biopsy, in order to reinforce the specificity of the diagnosis.

The low sensitivity of the biopsy, together with the fact that a second biopsy only provides 3%-10% of positive results, justifies the search of new diagnostic methods, especially color Doppler echography.

In the past years, Doppler echography has been shown as valid for the diagnosis of GCA in multiple articles, among them a meta-analysis of 23 studies with 2036 patients. The results of the meta-analysis show a sensitivity of 88% and a specificity of 78% versus temporal artery biopsy, while with the ACR criteria as a standard, sensitivity is 87% and specificity is 96%. These results are obtained through the detection of 3 echocardiographic signs: a) a hypoechoic halo; b) stenosis; and c) vascular occlusion. The hypoechoic halo is the most specific sign and represents vessel wall edema associated with vasculitis. As a limitation of this meta-analysis, it must be pointed out that there is a noticeable heterogeneity in the studies, some being small and modest in quality.

E-mail address: eugenio.demiguel@gmail.com

1699-258X(5 - see front matter © 2009 Elsevier España, S.L. All rights reserved.
After demonstrating the validity of echography in the diagnosis of GCA, a debate has developed on whether echography, due to its superior sensitivity compared to biopsy and its good specificity, can substitute histology in the diagnosis of the disease. The debate is open and up until now the answer was negative because biopsy, with a 100% specificity, is unquestionable; however, echography is gaining terrain as the quality of new equipment improves, and in 2006 the first article pointing out that the detection of a bilateral halo sign in temporal arteries is 100% specific for the diagnosis of GCA, therefore eliminating the need for a biopsy, was published. These results have been confirmed by our group with a larger number of examinations. Even if we accept this hypothesis, biopsy would still be needed when the lesions affect a branch of the superficial temporal artery or when the type of vasculitis was in doubt, because although echography can easily discover edema of the vessel wall, this can be seen not only in GCA, but also in diseases such as arteritis nodosa, Wegener’s granulomatosis, tromboangiitis obliterans (Buerger’s disease), malignant histiocytosis, or HIV infection. In the case of Churg-Strauss vasculitis, the echographic pattern of vessel wall edema is different, making it possible to not reach the differential diagnosis, even when the temporal arteries are not affected. All of this leads to the infrequent possibility, approximately in 3% of the cases, that temporal artery biopsy would still be needed. An additional contribution has been the demonstrated fact that echography increases the sensitivity of a biopsy (18 of 18 cases) when this is performed in the zone where the hypoechoic halo has been observed.

The better sensitivity of echography versus biopsy is due to the fact that it is capable of examining several vessels along their route, giving it a larger validity regarding aspect and content. In addition, and according to the clinical data of the patients, more vessels can be examined, such as occipital arteries in the case of headaches in a patient with a history of migraine, or subclavian and brachial arteries in the case of headaches in the case of patients with hypertension. In conclusion, echography is a valid and trustworthy technique that reduces costs, increases patient satisfaction, has a higher validity regarding aspect and content and facilitates diagnostic and therapeutic decision making. All of this is leading to the passage of echography in GCA from being a research tool to something that is applicable in the daily practice and has a promising future.

References