Journal Information
Vol. 6. Issue 6.
Pages 306-310 (November - December 2010)
Share
Share
Download PDF
More article options
Vol. 6. Issue 6.
Pages 306-310 (November - December 2010)
Full text access
Epigenetic therapies, a step beyond biologics for rheumatoid arthritis
Las terapias epigenéticas, más allá de los biológicos en el tratamiento de la artritis reumatoide
Visits
5943
Olga Sánchez-Pernaute
Servicio de Reumatología, Fundación Jiménez Díaz, Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
This item has received
Article information
Abstract

Over the last decade, the management of rheumatoid arthritis has evolved as a result of both the understanding of disease-related processes and the availability of the necessary high-throughput technology to provide patients with molecule-based therapies. New therapies allow the classification of patients into subsets as regards clinical response, at the same time adding to our knowledge of rheumatoid arthritis pathogenesis. New generations of molecules will likely soon be ready for “a la carte” treatment of patients. A promising field of research is epigenetics. Epigenetic regulatory mechanisms switch on and off the transcription of specific genes in individual cells. Acting as observers on non-adequate gene expression, these mechanisms yield protection against the development of tumours. The major achievement of epigenetic therapies could be their selective action on cells with altered epigenetic programs, and it is our challenge to recognize these alterations among patients with rheumatoid arthritis. Although safety concerns may arise, epigenetic drugs will likely be used to treat autoimmune diseases.

Keywords:
Genome methylation
Histone deacetylases
Cytokines
Cell death
Reprogramming
Resumen

La artritis reumatoide ha experimentado en la última década una revolución terapéutica, derivada del conocimiento de los procesos patogénicos y favorecida por el desarrollo de la tecnología necesaria para distribuir tratamientos moleculares. Las nuevas terapias permiten diferenciar subtipos de pacientes según la respuesta clínica y además mejoran nuestra comprensión de la enfermedad. Ello hace vaticinar la llegada de nuevas generaciones de moléculas para un tratamiento individualizado. Uno de los campos hacia donde se dirigen las investigaciones es la epigenética. Los mecanismos de regulación epigenéticos son interruptores que deciden cuándo y cómo expresar determinados genes en cada célula. Actuando como vigilantes de una expresión génica inapropiada, protegen al organismo del desarrollo de tumores. La principal ventaja de los tratamientos epigenéticos podría ser su selectividad por las células que muestran patrones epigenéticos alterados, por lo que el reto es identificar estas alteraciones entre los pacientes con artritis reumatoide. Aunque debe establecerse su perfil de seguridad, parece probable el uso de terapias epigenéticas en las enfermedades autoinmunes.

Palabras clave:
Metilación del Genoma
Histona-deacetilasas
Citoquinas
Muerte Celular
Reprogramación
Full text is only aviable in PDF
References
[1.]
P. Wordsworth, J. Bell.
Polygenic susceptibility in rheumatoid arthritis.
Ann Rheum Dis, 50 (1991), pp. 343-346
[2.]
B.E. Bernstein, A. Meissner, E.S. Lander.
The mammalian epigenome.
[3.]
W. Reik, W. Dean, J. Walter.
Epigenetic reprogramming in mammalian development.
Science, 293 (2001), pp. 1089-1093
[4.]
G. Egger, G. Liang, A. Aparicio, P.A. Jones.
Epigenetics in human disease and prospects for epigenetic therapy.
Nature, 429 (2004), pp. 457-463
[5.]
W. Fischle, Y. Wang, C.D. Allis.
Binary switches and modification cassettes in histone biology and beyond.
Nature, 425 (2003), pp. 475-479
[6.]
K. Ito, I.M. Adcock.
Histone acetylation and histone deacetylation.
Mol Biotechnol, 20 (2002), pp. 99-106
[7.]
M. Grunstein.
Nucleosomes: regulators of transcription.
Trends Genet, 6 (1990), pp. 395-400
[8.]
K. Struhl.
Histone acetylation and transcriptional regulatory mechanisms.
Genes Dev, 12 (1998), pp. 599-606
[9.]
C.E. McCall, B.K. Yoza.
Gene silencing in severe systemic inflammation.
Am J Respir Crit Care Med, 175 (2007), pp. 763-767
[10.]
X. Li, S.S. Makarov.
An essential role of NF-kappaB in the “tumor-like” phenotype of arthritic synoviocytes.
Proc Natl Acad Sci USA, 103 (2006), pp. 17432-17437
[11.]
W. Vanden Berghe, M.N. Ndlovu, R. Hoya-Arias, N. Dijsselbloem, S. Gerlo, G. Haegeman.
Keeping up NF-kappaB appearances: epigenetic control of immunity or inflammation-triggered epigenetics.
Biochem Pharmacol, 72 (2006), pp. 1114-1131
[12.]
P. Cheung, C.D. Allis, P. Sassone-Corsi.
Signaling to chromatin through histone modifications.
Cell, 103 (2000), pp. 263-271
[13.]
S. Saccani, G. Natoli.
Dynamic changes in histone H3 Lys 9 methylation occurring at tightly regulated inducible inflammatory genes.
Genes Dev, 16 (2002), pp. 2219-2224
[14.]
S. Reiner.
Epigenetic control in the immune response.
Hum Mol Genet, 14 (2005), pp. R41-R46
[15.]
I.M. Djuretic, D. Levanon, V. Negreanu, Y. Groner, A. Rao, K.M. Ansel.
Transcription factors T-bet and Runx3 cooperate to activate IFNγ and silence IL4 in T helper type 1 cells.
Nat Immunol, 8 (2007), pp. 145-153
[16.]
G. Lal, J.S. Bromberg.
Epigenetic mechanisms of regulation of Foxp3 expression.
Blood, (2009),
[17.]
S.F. Ziegler, J.H. Buckner.
FOXP3 and the regulation of Treg/Th17 differentiation.
Microbes Infect, 11 (2009), pp. 594-598
[18.]
M. Ehrich, J. Turner, P. Gibbs, L. Lipton, M. Giovanneti, C. Cantor, et al.
Cytosine methylation profiling of cancer cell lines.
Proc Natl Acad Sci USA, 105 (2008), pp. 4844-4849
[19.]
A.R. Karpf, S. Matsui.
Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells.
Cancer Res, 65 (2005), pp. 8635-8639
[20.]
J.S. Carew, F.J. Giles, S.T. Nawrocki.
Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy.
Cancer Lett, 269 (2008), pp. 7-17
[21.]
E. Rutkauskaite, W. Zacharias, J. Schedel, U. Müller-Ladner, C. Mawrin, C.A. Seemayer, et al.
Ribozymes that inhibit the production of matrix metalloproteinase 1 reduce the invasiveness of rheumatoid arthritis synovial fibroblasts.
Arthritis Rheum, 50 (2004), pp. 1448-1456
[22.]
T. Pap, M. Nawrath, J. Heinrich, M. Bosse, A. Baier, K.M. Hummel, et al.
Cooperation of Ras-and c-Myc-dependent pathways in regulating the growth and invasiveness of synovial fibroblasts in rheumatoid arthritis.
Arthritis Rheum, 50 (2004), pp. 2794-2802
[23.]
T. Pap, I. Meinecke, U. Müller-Ladner, S. Gay.
Are fibroblasts involved in joint destruction?.
Ann Rheum Dis, 64 (2005), pp. iv52-iv54
[24.]
U. Müller-Ladner, T. Pap, R.E. Gay, M. Neidhart, S. Gay.
Mechanisms of disease: the molecular and cellular basis of joint destruction in rheumatoid arthritis.
Nat Clin Pract Rheumatol, 1 (2005), pp. 102-110
[25.]
N. Takami, K. Osawa, Y. Miura, K. Komai, M. Taniguchi, M. Shiraishi, et al.
Hypermethylated promoter region of DR3, the death receptor 3 gene, in rheumatoid arthritis synovial cells.
Arthritis Rheum, 54 (2006), pp. 779-787
[26.]
A. Morinobu, B. Wang, J. Liu, S. Yoshiya, M. Kurosaka, S. Kumagai.
Trichostatin A cooperates with Fas-mediated signal to induce apoptosis in rheumatoid arthritis synovial fibroblasts.
J Rheumatol, 33 (2006), pp. 1052-1060
[27.]
A. Jungel, V. Baresova, C. Ospelt, B.R. Simmen, B.A. Michel, R.E. Gay, et al.
Trichostatin A sensitises rheumatoid arthritis synovial fibroblasts for TRAIL-induced apoptosis.
Ann Rheum Dis, 65 (2006), pp. 910-912
[28.]
B.M. Javierre, M. Esteller, E. Ballestar.
Epigenetic connetions between autoimmune disorders and haematological malignancies.
Trends Immunol, 29 (2008), pp. 616-623
[29.]
M. Esteller.
Epigenetics in cancer.
N Engl J Med, 358 (2008), pp. 1148-1159
[30.]
H.F. Nijhout, M.C. Reed, C.M. Ulrich.
Mathematical models of folate-mediated one-carbon metabolism.
Vitam Horm, 79 (2008), pp. 45-82
[31.]
H. Wehbe, R. Henson, F. Meng, J. Mize-Berge, T. Patel.
Interleukin-6 contributes to growth in cholangiocarcinoma cells by aberrant promoter methylation and gene expression.
Cancer Res, 66 (2006), pp. 10517-10524
[32.]
J. Couillard, M. Demers, G. Lavoie, Y. St-Pierre.
The role of DNA hypomethylation in the control of stromelysin gene expression.
Biochem Biophys Res Commun, 342 (2006), pp. 1233-1239
[33.]
H.I. Roach, N. Yamada, K.S. Cheung, S. Tilley, N.M. Clarke, R.O. Oreffo, et al.
Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions.
Arthritis Rheum, 52 (2005), pp. 3110-3124
[34.]
K. Nishida, T. Komiyama, S. Miyazawa, Z.N. Shen, T. Furumatsu, H. Doi, et al.
Histone deacetylase inhibitor suppression of autoantibody-mediated arthritis in mice via regulation of p16INK4a and p21(WAF1/Cip1) expression.
Arthritis Rheum, 50 (2004), pp. 3365-3376
[35.]
H. Manabe, Y. Nasu, T. Komiyama, T. Furumatsu, A. Kitamura, S. Miyazawa, et al.
Inhibition of histone deacetylase down-regulates the expression of hypoxiainduced vascular endothelial growth factor by rheumatoid synovial fibroblasts.
Inflamm Res, 57 (2008), pp. 4-10
[36.]
H.S. Lin, C.Y. Hu, H.Y. Chan, Y.Y. Liew, H.P. Huang, L. Lepescheux, et al.
Anti-rheumatic activities of histone deacetylase (HDAC) inhibitors in vivo in collagen-induced arthritis in rodents.
Br J Pharmacol, 150 (2007), pp. 862-872
[37.]
F. Leoni, G. Fossati, E.C. Lewis, J.K. Lee, G. Porro, P. Pagani, et al.
The histone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory cytokines in vitro and systemic inflammation in vivo.
[38.]
L.C. Huber, M. Brock, H. Hemmatazad, O.T. Giger, F. Moritz, M. Trenkmann, et al.
Histone deacetylase/acetylase activity in total synovial tissue derived from rheumatoid arthritis and osteoarthritis patients.
Arthritis Rheum, 56 (2007), pp. 1087-1093
[39.]
Y. Kondo, L. Shen, A.S. Cheng, S. Ahmed, Y. Boumber, C. Charo, et al.
Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation.
Nat Genet, 40 (2008), pp. 741-750
[40.]
M. Wissmann, N. Yin, J.M. Müller, H. Greschik, B.D. Fodor, T. Jenuwein, et al.
Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression.
Nat Cell Biol, 9 (2007), pp. 347-353
[41.]
P.J. Pollard, C. Loenarz, D.R. Mole, M.A. McDonough, J. Gleadle, C.J. Schofield, et al.
Regulation of Jumonji-domain containing histone demethylases by hypoxia inducible factor (HIF) 1-alpha.
Biochem J., 416 (2008), pp. 387-394
[42.]
Y. Li, M.A. Reddy, F. Miao, N. Shanmugam, J.K. Yee, D. Hawkins, et al.
Role of histone H3 lysine 4 methyltransferase. SET7/9, in the regulation of NF-kappaBdependent inflammatory genes. Revelance to diabetes and inflammation.
J Biol Chem, 283 (2008), pp. 26771-26781
[43.]
K. Heo, B. Kim, K. Kim, J. Choi, H. Kim, Y. Zhan, et al.
Isolation and characterization of proteins associated with histone H3 tails in vivo.
J Biol Chem, 282 (2007), pp. 15476-15483
[44.]
N.P. Mongan, L.J. Gudas.
Valproic acid, in combination with all-trans retinoic acid and 5-aza-2’-deoxycytidine, restores expresión of silenced RARbeta2 in breast cancer cells.
Mol Cancer Ther, 4 (2005), pp. 477-486
[45.]
A.O. Soriano, H. Yang, S. Faderl, Z. Estrov, F. Giles, F. Ravandi, et al.
Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all trans retinoic acid in acute myeloid leucemia and myelodysplastic syndromes.
Blood, 110 (2007), pp. 2302-2308
[46.]
J. Fan, W.J. Yin, J.S. Lu, L. Wang, J. Wu, F.Y. Wu, et al.
ER alpha negative breast cancer cells restore response to endocrine therapy by combination treatment with both HDAC inhibitor and DNMT inhibitor.
J Cancer Res Clin Oncol, 134 (2008), pp. 883-890
[47.]
J.S. Smolen, G. Steiner.
Therapeutic strategies for rheumatoid arthritis.
Nat Rev Drug Discov, 2 (2003), pp. 473-488
[48.]
C. Ospelt, M. Neidhart, R.E. Gay, S. Gay.
Gene analysis for exploring the effects of drugs in rheumatoid arthritis.
Arthritis Rheum, 52 (2005), pp. 2248-2256
[49.]
S. Guil, M. Esteller.
DNA methylomes, histone codes and miRNAs: tying it all together.
Int J Biochem Cell Biol, 41 (2009), pp. 87-95
Copyright © 2010. Sociedad Española de Reumatología and Colegio Mexicano de Reumatología
Download PDF
Idiomas
Reumatología Clínica (English Edition)
Article options
Tools
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?