Información de la revista
Vol. 2. Núm. 1.
Páginas 36-43 (enero - febrero 2006)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 2. Núm. 1.
Páginas 36-43 (enero - febrero 2006)
Revisiones
Acceso a texto completo
El ácido hialurónico en el tratamiento de la artrosis
Hyaluronic acid in the treatment of osteoarthritis
Visitas
61234
J. Monforta, P. Benitob,
Autor para correspondencia
pbenito@imas.imim.es

Correspondencia: Dr. P. Benito. Servicio Reumatología del IMAS. Hospital del Mar. Passeig Marítim, 25. 08003 Barcelona. España.
a Osteoarthritis Research Unit. Centre de Recherche du CHUM. Centre Hospitalier de l’Université de Montréal-Hôpital Notre-Dame. Montreal. Quebec. Canadá
b Servicio Reumatología del IMAS. Hospital del Mar. Barcelona. España
Este artículo ha recibido
Información del artículo

El ácido hialurónico (AH) es un glucosaminoglucano compuesto de disacáridos de ácido glucurónico y Nacetilglucosamina, presente a altas concentraciones en el tejido conectivo de los mamíferos. En la artrosis (AO), la longitud y la concentración del AH se hallan disminuidas. A principios de los años setenta empezaron a utilizarse las inyecciones intraarticulares de AH con el fin de restaurar las propiedades reológicas del líquido sinovial. Sin embargo, a pesar de su amplia utilización en clínica, numerosas cuestiones sobre su mecanismo de acción y sus propiedades como fármaco continúan sin esclarecerse. La revisión de la literatura médica realizada en este artículo pone de manifiesto las propiedades del AH como modificador lento de los síntomas en la atrosis (SYSADOA) y, a su vez, evidencia la no existencia de suficientes estudios que permitan calificarlo como fármaco modificador de la estructura (DMOAD). El AH posee una amplia variedad de mecanismos de acción que van desde su interacción con los mecanismos nociceptivos del dolor hasta su capacidad para modular la homeostasis de la matriz extracelular.

A pesar de que el AH de bajo peso molecular presenta un mejor perfil de seguridad y se muestra ligeramente superior en los estudios in vitro y de experimentación animal, los ensayos clínicos que valoran la eficacia del fármaco no aportan la suficiente evidencia para aconsejar el uso del AH de un determinado peso molecular en detrimento del resto.

Palabras clave:
Hialurónico Hialuronato
Viscosuplementación
Ácido hialurónico
Artrosis

Hyaluronic acid is a glycosaminoglycan composed of disaccharides of glucuronic acid and N-acetylglucosamine. It is present at high concentrations in mammalian connective tissues. Since the length and concentration of HA decrease in osteoarthritis (AO), intraarticular HA injections began to be used in the early 1970s to restore the rheological properties of synovial fluid. Despite the widespread use of HA, many questions about its mechanism of action and properties remain to be clarified. A literature review presented in this article reveals that HA is a symptomatic slow-acting drug in osteoarthritis (SYSADOA) and that there is insufficient evidence to qualify it as a disease modifying osteoarthritis drug (DMOAD).

HA is involved in many mechanisms of action ranging from interaction with mechanosensitive articular pain receptors to its ability to modulate extracellular matrix homeostasis. Although low molecular weight HA has a better safety profile and is slightly superior in in vitro studies and animal experimentation, clinical trials evaluating the efficacy of the drug show insufficient evidence to enable one type of HA to be recommended in preference to any other.

Key words:
Hyaluronan
Hyaluronate
Viscosupplementation
Hhyaluronic acid
Osteoarthritis
El Texto completo está disponible en PDF
Bibliografía
[1.]
B. Haraoui, B.H. Raynauld.
Intra-articular therapy in osteoarthritis.
Modern therapeutics in rheumatic diseases, pp. 193-200
[2.]
L. Gossec, M. Dougados.
Intra-articular treatments in osteoarthritis: from the symptomatic to the structure modifying.
Ann Rheum Dis, 63 (2004), pp. 478-482
[3.]
L.B. Dahl, I.M. Dahl, A. Engstrom-Laurent, K. Granath.
Concentration and molecular weight of sodium hyaluronate in synovial fluid from patients with rheumatoid arthritis and other arthropathies.
Ann Rheum Dis, 44 (1985), pp. 817-822
[4.]
J.G. Peyron, E.A. Balazs.
Preliminary clinical assessment of Na-hyaluronate injection into human arthritis joints.
Pathol Biol, 22 (1974), pp. 731-736
[5.]
E.A. Balazs, J.L. Delinger.
Viscosupplementation: a new concept in the treatment of osteoarthritis.
J Rheumatol Suppl, 39 (1993), pp. 3-9
[6.]
A.S. Dixon, R.K. Jacoby, H. Berry, E.B. Hamilton.
Clinical trial of intra-articular injection of sodium hyaluronate in patients with osteoarthritis of the knee.
Curr Med Res Opin, 11 (1988), pp. 205-213
[7.]
M. Dougados, M. Nguyen, V. Listrat, B. Amor.
High molecular weight sodium hyaluronate (hyalectin) in osteoarthritis of the knee: a 1 year placebo-controlled trial.
Osteoarthritis Cartilage, 1 (1993), pp. 97-103
[8.]
G. Grecomoro, U. Martorana, C. Di Marco.
Intra-articular treatment with sodium hyaluronate in gonarthrosis: a controlled clinical trial versus placebo.
Pharmatherapeutica, 5 (1987), pp. 137-141
[9.]
E.B. Henderson, E.C. Smith, F. Pegley, D.R. Blake.
Intra-articular injections of 750 kD hyaluronan in the treatment of osteoarthritis: a randomized single centre double-blind placebo-controlled trial of 91 patients demostrating lack of efficacy.
Ann Rheum Dis, 53 (1994), pp. 529-534
[10.]
O. Namiki, H. Toyoshima, N. Morisaki.
Therapeutic effect of intra-articular injection of high molecular weight hyaluronic acid on osteoarthritis of the knee.
Int J Clin Pharmacol Ther Toxicol, 20 (1982), pp. 501-507
[11.]
G. Grecomoro, F. Piccione, G. Letizia.
Therapeutic synergism between hyaluronic acid and dexamethasone in the intra-articular treatment of osteoarthritis of the knee: a preliminary open study.
Curr Med Res Opin, 13 (1992), pp. 49-55
[12.]
G. Leardini, L. Mattara, M. Franceschini, A. Perbellini.
Intraarticular treatment of knee osteoarthritis. A comparative study between hyaluronic acid and 6-methylprednisolone acetate.
Clin Exp Rheumatol, 9 (1991), pp. 375-381
[13.]
D. Caborn, J. Rush, W. Lanzer, D. Parenti, C. Murray, Synvisc 901 Study Group.
A randomized, single-blind comparison of the efficacy and tolerability of hylan G-F 20 and triamcinolone hexacetonide in patients with osteoarthritis of the knee.
J Rheumatol, 31 (2004), pp. 333-343
[14.]
V. Pietrogrande, P.L. Melanotte, B. D’Agnolo, M. Ulivi, G.A. Benigni, L. Turchetto.
Hyaluronic acid versus methylprednisolone intra-articularly injected for the treatment of osteoarthritis of the knee.
Curr Therap Res, 50 (1991), pp. 691-701
[15.]
M.E. Adams, M.H. Atkinson, A.J. Lussier, J.I. Schulz, K.A. Siminovitch, J.P. Wade, et al.
The role of viscosupplementation with Hylan G-F 20 (Synvisc) in the treatment of osteoarthritis of the knee: a Canadian multicenter trial comparing hylan G-F 20 alone, hylan G-F 20 with nonsteroidal anti-inflammatory drugs (NSAIDs) and NSAIDs alone.
Osteoarthritis Cartilage, 3 (1995), pp. 213-225
[16.]
K. Takahashi, R.S. Goomer, F. Harwood, T. Kubo, Y. Hirasawa, D. Amiel.
The effects of hyaluronan on matrix metalloproteinase-3 (MMP-3). Interleukin-1β, and tissue inhibitor of metalloproteinase-1 (TIMP-1) gene expression during the development of osteoarthritis.
Osteoarthritis Cartilage, 7 (1999), pp. 182-190
[17.]
S.M. Julovi, T. Yasuda, M. Shimizu, T. Hiramitsu, T. Nakamura.
Inhibition of interleukin-1β-stimulated production of matrix metalloproteinases by hyaluronan via CD44 in human articular cartilage.
Arthritis Rheum, 50 (2004), pp. 516-525
[18.]
K. Takahashi, S. Hashimoto, T. Kubo, Y. Hirasawa, M. Lotz, D. Amiel.
Effect of hyaluronan on chondrocyte apoptosis and nitric oxide production in experimentally induced osteoarthritis.
J Rheumatol, 27 (2000), pp. 1713-1720
[19.]
D.J. Hulmes, M.E. Marsden, R.K. Strachan, R.E. Harvey, N. Mclnnes, D.L. Gardner.
Intra-articular hyaluronate in experimental rabbit osteoarthritis can prevent changes in cartilage proteoglycan content.
Osteoarthritis Cartilage, 12 (2004), pp. 232-238
[20.]
V.M. Goldberg, J.A. Buckwalter.
Hyaluronans in the treatment of osteoarthritis of the knee: evidence for disease-modifying activity.
Osteoarthritis Cartilage, 13 (2005), pp. 216-224
[21.]
V. Listrat, X. Ayral, F. Patarnello, J.P. Bonvarlet, J. Simonnet, B. Amor, et al.
Arthroscopic evaluation of potential structure modifying activity of hyaluronan (Hyalgan) in osteoarthritis of the knee.
Osteoarthritis Cartilage, 5 (1997), pp. 153-160
[22.]
R.W. Jubb, S. Piva, L. Beinat, J. Dacre, P. Gishen.
A one-year randomised, placebo (saline) controlled clinical trial of 500-730 kDa sodium hyaluronate (Hyalgan) on the radiological change in osteoarthritis of the knee.
Int J Clin Pract, 57 (2003), pp. 467-474
[23.]
E. Balazs.
The physical properties of synovial fluid and the specific role of hyaluronic acid.
Disorders of the Knee, pp. 61-74
[24.]
C. Belcher, R. Yaqub, F. Fawthrop, M. Bayliss, M. Doherty.
Synovial fluid chondroitin and keratan sulphate epitopes, glycosaminoglycans, and hyaluronan in arthritic and normal knees.
Ann Rheum Dis, 56 (1997), pp. 299-307
[25.]
K. Tanimoto, S. Ohno, K. Fujimoto, K. Honda, C. Ijuin, N. Tanaka, et al.
Proinflammatory cytokines regulate the gene expression of hyaluronic acid synthetase in cultured rabbit synovial membrane cells.
Connect Tissue Res, 42 (2001), pp. 187-195
[26.]
M.M. Smith, P. Ghosh.
The synthesis of hyaluronic acid by human synovial fibroblasts is influenced by the nature of the hyaluronate in the extracellular environment.
Rheumatol Int, 7 (1987), pp. 113-122
[27.]
D.M. Salter, J.L. Godolphin, M.S. Gourlay, M.F. Lawson, D.E. Hughes, E. Dunne.
Analysis of human articular chondrocyte CD44 isoform expression and fuction in health and disease.
[28.]
W. Knudson, R.F. Loeser.
CD44 and integrin matrix receptors participate in cartilage homeostasis.
Cell Mol Life Sci, 59 (2002), pp. 36-44
[29.]
G. Chow, J.J. Nietfeld, C.B. Knudson, W. Knudson.
Antisense inhibition of chondrocyte CD44 expression leading to cartilage chondrolysis.
[30.]
O. Ishida, Y. Tanaka, I. Morimoto, M. Takigawa, S. Eto.
Chondrocytes are regulated by cellular adhesion throgh CD44 and hyaluronic acid pathway.
J Bone Miner Res, 12 (1997), pp. 1657-1663
[31.]
L.W. Moreland.
Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: mechanisms of action.
Arthritis Res Ther, 5 (2003), pp. 54-67
[32.]
M.A. Pozo, E.A. Balazs, C. Belmonte.
Reduction of sensory responses to passive movements of inflamed knee joints by hylan, a hyaluronan derivative.
Exp Brain Res, 116 (1997), pp. 3-9
[33.]
A. Gomis, M. Pawlak, E.A. Balazs, R.F. Schmidt, C. Belmonte.
Effects of different molecular weight elastoviscous hyaluronan solutions on articular nociceptive afferents.
Arthritis Rheum, 50 (2004), pp. 314-326
[34.]
L. Pena Ede, S. Sala, J.C. Rovira, R.F. Schmidt, C. Belmonte.
Elastoviscous substances with analgesic effects on joint pain reduce stretch-activated ion channel activity in vitro.
Pain, 99 (2002), pp. 501-508
[35.]
S. Aihara, N. Murakami, R. Ishii, K. Kariya, Y. Azuma, K. Hamada, et al.
Effects of sodium hyaluronate on the nociceptive response of rats with experimentally induced arthritis.
Nippon Yakurigaku Zasshi, 100 (1992), pp. 359-365
[36.]
A.R. Moore, D.A. Willoughby.
Hyaluronan as a drug delivery system for diclofenac: a hypothesis for mode of action.
Int J Tissue React, 17 (1995), pp. 153-156
[37.]
S.P. Frean, L.A. Abraham, P. Less.
In vitro stimulation of equine articular cartilage proteoglycan synthesis by hyaluronan and carprofen.
Res Vet Sci, 67 (1999), pp. 183-190
[38.]
T. Kikuchi, H. Yamada, M. Shimmei.
Effect of high molecular weight hyaluronan on cartilage degeneration in a rabbit model of osteoarthritis.
Osteoarthritis Cartilage, 4 (1996), pp. 99-110
[39.]
K. Fukuda, H. Dan, M. Takayama, F. Kumano, M. Saitoh, S. Tanaka.
Hyaluronic acid increases proteoglycan synthesis in bovine articular cartilage in the presence of interleukin-1.
J Pharmacol Exp Ther, 277 (1996), pp. 1672-1675
[40.]
J. Stove, C. Gerlach, K. Huch, K.P. Gunther, W. Puhl, H.P. Scharf.
Effects of hyaluronan on proteoglycan content of osteoarthritic chondrocytes in vitro.
J Orthop Res, 20 (2002), pp. 551-555
[41.]
A. Shimazu, A. Jikko, M. Iwamoto, T. Koike, W. Yan, Y. Okada, et al.
Effects of hyaluronic acid on the release of proteoglycan from the cell matrix in rabbit chondrocyte cultures in the presence and absence of cytokines.
Arthritis Rheum, 36 (1993), pp. 247-253
[42.]
E.A. Morris, S. Wilcon, B.W. Treadwell.
Inhibition of interleukin 1- mediated proteoglycan degradation in bovine articular cartilage explants by addition of sodium hyaluronate.
Am J Vet Res, 53 (1992), pp. 1977-1982
[43.]
N.E. Larsen, K.M. Lombard, E.G. Parent, E.A. Balazs.
Effect of hylan on cartilage and chondrocyte cultures.
J Orthop Res, 10 (1992), pp. 23-32
[44.]
Y. Kang, W. Eger, H. Koepp, J.M. Williams, K.E. Kuettner, G.A. Homandberg.
Hyaluronan suppresses fibronectin fragment-mediated damage to human cartilage explant cultures by enhancing proteoglycan synthesis.
J Orthop Res, 17 (1999), pp. 858-869
[45.]
G.A. Homandberg, F. Hui, C. Wen, K.E. Kuettner, J.M. Williams.
Hyaluronic acid suppresses fibronectin fragment mediated cartilage chondrolysis: I. In vitro.
Osteoarthritis Cartilage, 5 (1997), pp. 309-319
[46.]
J.M. Williams, V. Plaza, F. Hui, C. Wen, K.E. Kuettner, G.A. Homandberg.
Hyaluronic acid suppresses fibronectin fragment mediated cartilage chondrolysis: II. In vivo.
Osteoarthritis Cartilage, 5 (1997), pp. 235-240
[47.]
J.S. Comer, S.A. Kincaid, A.N. Baird, J.R. Kammermann, R.R. Hanson Jr, Y. Ogawa.
Immunolocalization of stromelysin, tumor necrosis factor (TNF) alpha, and TNF receptors in atrophied canine articular cartilage treated with hyaluronic acid and transforming growth factor beta.
Am J Vet Res, 57 (1996), pp. 1488-1496
[48.]
T. Nonaka, H. Kikuchi, T. Ikeda, Y. Okamoto, C. Hamanishi, S. Tanaka.
Hyaluronic acid inhibits the expression of u-PA, PAI-1, and u-PAR in human synovial fibroblasts of osteoarthritis and rheumatoid arthritis.
J Rheumatol, 27 (2000), pp. 997-1004
[49.]
T. Nonaka, H. Kikuchi, W. Shimada, H. Itagene, T. Ikeda, C. Hamanishi, et al.
Effects of hyaluronic acid on fibrinolytic factors in the synovial fluid (in vivo).
Pathophysiology, 6 (1999), pp. 41-44
[50.]
T. Yasui, M. Akatsuka, K. Tobetto, M. Hayaishi, T. Ando.
The effect of hyaluronan on interleukin-1 alpha-induced prostaglandin E2 production in human osteoarthritic synovial cells.
Agents actions, 37 (1992), pp. 155-156
[51.]
M. Goto, T. Hanyu, T. Yoshio, H. Matsuno, M. Shimizu, N. Murata, et al.
Intra-articular injection of hyaluronate (SI-6601D) improves joint pain and synovial fluid prostaglandin E2 levels in rheumatoid arthritis: a multicenter clinical trial.
Clin Exp Rheumatol, 19 (2001), pp. 377-383
[52.]
L. Punzi, F. Schiavon, F. Cavasin, R. Ramonda, P.F. Gambari, S. Todesco.
The influence of intra-articular hyaluronic acid on PGE2 and cAMP of synovial fluid.
Clin Exp Rheumatol, 7 (1989), pp. 247-250
[53.]
H. Sato, T. Takahashi, H. Ide, T. Fukushima, M. Tabata, F. Sekine, et al.
Antioxidant activity of synovial fluid, hyaluronic acid, and two subcomponents of hyaluronic acid. Synovial fluid scavenging effect is enhanced in rheumatoid arthritis patients.
Arthritis Rheum, 31 (1988), pp. 63-71
[54.]
Fukuda K, Oh M, Asada S, Hara F, Matsukawa M, Otani K, et al. Sodium hyaluronate inhibits interleukin-1-evoked reactive oxygen species of bovine articular chondrocytes. Osteoarthritis Cartilage. 200;9:390-2.
[55.]
K. Fukuda, M. Takayama, M. Ueno, M. Oh, S. Asada, F. Kumano, et al.
Hyaluronic acid inhibits interleukin-1-induced superoxide anion in bovine chondrocytes.
Inflamm Res, 46 (1997), pp. 114-117
[56.]
J. Stadler, M. Stefanovic-Racic, T.R. Billiar, R.D. Curran, L.A. McIntyre, H.I. Georgescu, et al.
Articular chondrocytes synthesize nitric oxide in response to cytokines and lipopolysaccharide.
J Immunol, 147 (1991), pp. 3915-3920
[57.]
D. Taskiran, M. Stefanovic-Racic, H. Georgescu, C. Evans.
Nitric oxide mediates suppression of cartilage proteoglycan synthesis by interleukin-1.
Biochem Biophys Res Commun, 2000 (1994), pp. 142-148
[58.]
M. Cao, A. Westerhausen-Larson, C. Niyibizi, K. Kavalkovich, H.I. Georgescu, C.F. Rizzo, et al.
Nitric oxide inhibits the synthesis of type II collagen without altering Col2A1 mRNA abundance: prolyl hydroxlase as a possible target.
Biochem J, 324 (1997), pp. 305-310
[59.]
G.A. Murrell, D. Jang, R.J. Williams.
Nitric oxide activates metalloprotease enzimes in articular cartilage.
Biochem Biophys Res Commun, 206 (1995), pp. 15-21
[60.]
K. Sasaki, T. Hattori, T. Fujisawa, K. Takahashi, H. Inove, M. Takigawa.
Nitric oxide mediates interleukin-1-induced gene expression of matrix metalloproteinases and basic fibroblast growth factor in cultured rabbit articular chondrocytes.
J Biochem, 123 (1998), pp. 431-439
[61.]
K. Kobayashi, S. Matsuzaka, Y. Yoshida, S. Miyauchi, Y. Wada, H. Moriya.
The effects of intraarticularly injected sodium hyaluronate on levels of intact aggrecan and nitric oxide in the joint fluid of patients with knee osteoarthritis.
Osteoarthritis Cartilage, 12 (2004), pp. 536-542
[62.]
K. Kobayashi, H. Mishima, F. Harwood, S. Hashimoto, T. Toyoguchi, R. Goomer, et al.
The suppressive effect of hyaluronan on nitric oxide production and cell apoptosis in the central region of meniscus following partial meniscectomy.
Iowa Orthop J, 22 (2002), pp. 39-41
[63.]
K. Takahashi, S. Hashimoto, T. Kubo, Y. Hirasawa, M. Lotz, D. Amiel.
Hyaluronan suppressed nitric oxide production in the meniscus and synovium of rabbit osteoarthritis model.
J Orthop Res, 19 (2001), pp. 500-503
[64.]
K. Takahashi, S. Hashimoto, T. Kubo, Y. Hirasawa, M. Lotz, D. Amiel.
Effect of hyaluronan on chondrocyte apoptosis and nitric oxide production in experimentally induced osteoarthritis.
J Rheumatol, 27 (2000), pp. 1713-1720
[65.]
J.T. Tung, P.J. Venta, J.P. Caron.
Inducible nitric oxide expression in equine articular chondrocytes: effects of antiinflammatory compounds.
Osteoarthritis Cartilage, 10 (2002), pp. 5-12
[66.]
F.J. Blanco, R. Guitian, E. Vázquez-Martul, F.J. De Toro, F. Galdo.
Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology.
[67.]
S. Hashimoto, K. Takahashi, D. Amiel, R.D. Coutts, M. Lotz.
Chondrocyte apoptosis and nitric oxide production during experimentally induced osteoarthritis.
[68.]
E. Maneiro, M.C. De Andrés, J.L. Fernández-Sueiro, F. Galdo, F.J. Blanco.
The biological action of hyaluronan on human osteoarthritic articular chondrocytes: the importance of molecular weight.
Clin Exp Rheumatol, 22 (2004), pp. 307-312
[69.]
J.P. Pelletier, J. Martel-Pelletier, DS. Howell.
Ethiopathogenesis of osteoarthritis.
Arthritis & Allied Conditions. A textbook of Rheumatology, pp. 2195-2245
[70.]
J. Martel-Pelletier, J.A. Di Battista, D. Lajeunesse.
Biochemical factors in joint articular tissue degradation in osteoarthritis.
Osteoarthritis: Clinical and Experimental Aspects, pp. 156-187
[71.]
J.P. Pelletier.
Rationale for the use of structure modifying-drugs and agents in the treatment of osteoarthritis.
Osteoarthritis Cartilage, 12 (2004), pp. S63-S68
[72.]
A. Sasaki, K. Sasaki, Y.T. Konttinen, S. Santavirta, M. Takahara, H. Takei, et al.
Hyaluronate inhibits the interleukin-1-beta-induced expression of matrix metalloproteinase MMP-1 and MMP-3 in human synovial cells.
Tohoku J Exp Med, 204 (2004), pp. 99-107
[73.]
K.M. Jordan, N.K. Arden, M. Doherty, B. Bannwarth, J.W. Bijlsma, P. Dieppe, et al.
EULAR Recommendations 2003: an evidence based approach to the management of knee osteoarthritis: Report of a Task Force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT).
Ann Rheum Dis, 62 (2003), pp. 1145-1155
[74.]
R.D. Altman, M.C. Hochberg, R.W. Moskowitz, T.J. Schnitzer.
Recommendations for the medical management of osteoarthritis of the hip and knee: 2000 update. American College of Rheumatology Subcommittee on Osteoarthritis Guidelines.
[75.]
M.G. Lequesne, C. Mery, M. Samson, P. Gerard.
Indexes of severity for osteoarthritis of the hip and knee. Validation-value in comparison with other assessment tests.
Scand J Rheumatol Suppl, 65 (1987), pp. 85-89
[76.]
N. Bellamy, W.W. Buchanan, C.H. Goldsmith, J. Campbell, L.W. Stitt.
Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee.
J Rheumatol, 15 (1988), pp. 1833-1840
[77.]
J.R. Kirwan, E. Rankin.
Intra-articular therapy in osteoarthritis.
Baillieres Clin Rheumatol, 11 (1997), pp. 769-794
[78.]
T.E. Towheed, M.C. Hochberg.
A systematic review of randomized, controlled trials of pharmacological therapy in osteoarthritis of the knee, with emphasis on trial methodology.
Semin Arthritis Rheum, 26 (1997), pp. 755-770
[79.]
X. Ayral.
Injections in the treatment of osteoarthritis.
Best Pract Res Clin Rheumatol, 15 (2001), pp. 609-626
[80.]
R.J. Petrella, M.D. DiSilvestro, C. Hildebrand.
Effects of hyaluronate sodium on pain and physical functioning in osteoarthritis of the knee: a randomized, double-blind, placebo-controlled clinical trial.
Arch Intern Med, 162 (2002), pp. 292-298
[81.]
G. Kolarz, R. Kotz, I. Hochmayer.
Long-term benefits and repeated treatment cycles of intra-articular sodium hyaluronate (hyalgan) in patients with osteoarthritis of the knee.
Semin Arthritis Rheum, 32 (2003), pp. 310-319
[82.]
R.J. Petrella.
Hyaluronic acid for the treatment of knee osteoarthritis: long-term outcomes from a naturalistic primary care experience.
Am J Phys Med Rehabil, 84 (2005), pp. 278-283
[83.]
G.H. Lo, M. LaValley, T. McAlindon, D.T. Felson.
Intra-articular hyaluronic acid in the treatment of knee osteoarthritis: a meta-analysis.
JAMA, 290 (2003), pp. 3115-3121
[84.]
C.T. Wang, J. Lin, C.J. Chang, Y.T. Lin, S.M. Hou.
Therapeutic effects of hyaluronic acid on osteoarthritis of the knee. A meta-analysis of randomized controlled trials.
J Bone Joint Surg Am, 86-A (2004), pp. 538-545
[85.]
R.D. Altman, R. Moskowitz.
Intraarticular sodium hyaluronate (Hyalgan) in the treatment of patients with osteoarthritis of the knee: a randomized clinical trial. Hyalgan Study Group.
J Rheumatol, 25 (1998), pp. 2203-2212
[86.]
E.M. Toh, P.S. Prasad, D. Teanby.
Correlating the efficacy of knee viscosupplementation with osteoarthritic changes on roentgenological examination.
Knee, 9 (2002), pp. 321-330
[87.]
T. Conrozier, P. Mathieu, A.M. Schott, I. Laurent, T. Hajri, P. Crozes, et al.
Factors predicting long-term efficacy of Hylan GF-20 viscosupplementation in knee osteoarthritis.
Joint Bone Spine, 70 (2003), pp. 128-133
[88.]
K.D. Brandt, G.N. Smith Jr, L.S. Simon.
Intraarticular injection of hyaluronan as treatment for knee osteoarthritis: what is the evidence?.
[89.]
M.I. Hamburger, S. Lakhanpal, P.A. Mooar, D. Oster.
Intra-articular hyaluronans: a review of product-specific safety profiles.
Semin Arthritis Rheum, 32 (2003), pp. 296-309
[90.]
E.A. Yacyshyn, E.L. Matteson.
Gout after intraarticular injection of hylan GF-20 (Synvisc).
J Rheumatol, 26 (1999), pp. 2717
[91.]
E. Disla, R. Infante, A. Fahmy, I. Karten, G.G. Cuppari.
Recurrent acute calcium pyrophosphate dihydrate arthritis following intraarticular hyaluronate injection.
[92.]
C. Bernardeau, B. Bucki, F. Liote.
Acute arthritis after intra-articular hyaluronate injection: onset of effusions without crystal.
Ann Rheum Dis, 60 (2001), pp. 518-520
[93.]
S.S. Leopold, W.J. Warme, P.D. Pettis, S. Shott.
Increased frequency of acute local reaction to intra-articular hylan GF-20 (synvisc) in patients receiving more than one course of treatment.
J Bone Joint Surg Am, 84-A (2002), pp. 1619-1623
[94.]
P. Ghosh, D. Guidolin.
Potential mechanism of action of intra-articular hyaluronan therapy in osteoarthritis: are the effects molecular weight dependent?.
Semin Arthritis Rheum, 32 (2002), pp. 10-37
[95.]
K. Tamoto, H. Nochi, M. Tada, S. Shimada, Y. Mori, S. Kataoka, et al.
High-molecular-weight hyaluronic acids inhibit chemotaxis and phagocytosis but not lysosomal enzyme release induced by receptor-mediated stimulations in guinea pig phagocytes.
Microbiol Immunol, 38 (1994), pp. 73-80
[96.]
K. Tamoto, M. Tada, S. Shimada, H. Nochi, Y. Mori.
Effects of high-molecular- weight hyaluronates on the functions of guinea pig polymorphonuclear leukocytes.
Semin Arthritis Rheum, 6 (1993), pp. 4-8
[97.]
D. Presti, J.E. Scott.
Hyaluronan-mediated protective effect against cell damage caused by enzymatically produced hydroxyl (OH) radicals is dependent on hyaluronan molecular mass.
Cell Biochem Funct, 12 (1994), pp. 281-288
[98.]
G.F. Peluso, A. Perbellini, G.F. Tajana.
The effect of high and low molecular weight hyaluronic acid on mitogen-induced lymphocyte proliferation.
Curr Ther Res, 47 (1990), pp. 437-443
[99.]
S.P. Frean, P. Lees.
Effects of polysulfated glycosaminoglycan and hyaluronan on prostaglandin E2 production by cultured enquine synoviocytes.
Am J Vet Res, 61 (2000), pp. 499-505
[100.]
C. Shimizu, T. Kubo, Y. Hirasawa, R.D. Coutts, D. Amiel.
Histomorphometric and biochemical effects of various hyaluronans on early osteoarthritis.
J Rheumatol, 25 (1998), pp. 1813-1819
[101.]
A. Asari, S. Miyauchi, S. Matsuzaka, T. Ito, E. Kominami, K. Uchiyama.
Molecular weight-dependent effects of hyaluronate on the arthritic synovium.
Arch Histol Cytol, 61 (1998), pp. 125-135
[102.]
P. Ghosh, R. Read, Y. Numata, S. Smith, S. Armstrong, D. Wilson.
The effects of intra-articular administration of hyaluronan in a model of early osteoarthritis in sheep. II. Cartilage composition and proteoglycan metabolism.
Semin Arthritis Rheum, 22 (1993), pp. 31-42
[103.]
A. Schiavinato, E. Lini, D. Guidolin, G. Pezzoli, P. Botti, M. Martelli, et al.
Intraarticular sodium hyaluronate injections in the Pond-Nuki experimental model of osteoarthritis in dogs. II. Morphological findings.
Clin Orthop Relat Res, 241 (1989), pp. 286-299
[104.]
A. Ialenti, M. Di Rosa.
Hyaluronic acid modulates acute and chronic inflammation.
Agents Actions, 43 (1994), pp. 44-47
[105.]
S. Gotoh, K. Miyazaki, J. Onaya, T. Sakamoto, K. Tokuyasu, O. Namiki.
Experimental knee pain model in rats and analgesic effect of sodium hyaluronate (SPH).
Nippon Yakurigaku Zasshi, 92 (1988), pp. 17-27
[106.]
S. Gotoh, J. Onaya, M. Abe, K. Miyazaki, A. Hamai, K. Horie, et al.
Effects of the molecular weight of hyaluronic acid and its action mechanisms of experimental joint pain in rats.
Ann Rheum Dis, 52 (1993), pp. 817-822
[107.]
M. Wobig, G. Bach, P. Beks, A. Dickhut, J. Runzheimer, G. Schwieger, et al.
The role of elastoviscosity in the efficacy of viscosupplementation for osteoarthritis of the knee: a comparison of Hylan G-F 20 and a lowermolecular weight hyaluronan.
Clin Ther, 21 (1999), pp. 1549-1562
[108.]
J. Karlsson, L.S. Sjogren, L.S. Lohmander.
Comparison of two hyaluronan drugs and placebo in patients with knee osteoarthritis. A controlled, randomized, double-blind, parallel-design multicentre study.
Rheumatology, 41 (2002), pp. 1240-1248
[109.]
L.D. Bennett, J.C. Buckland-Wright.
Meniscal and articular cartilage changes in knee osteoarthritis: a cross-sectional double-contrast macroradiographic study.
Rheumatology, 41 (2002), pp. 917-923
[110.]
J.G. Adams, T. McAlindon, M. Dimasi, J. Carey, S. Eustace.
Contribution of meniscal extrusion and cartilage loss to joint space narrowing in osteoarthritis.
Clin Radiol, 54 (1999), pp. 502-506
[111.]
P. Richette, T. Bardin.
Structure-modifying agents for osteoarthritis: an update.
Joint Bone Spine, 71 (2004), pp. 18-23
Copyright © 2006. Elsevier España S.L. Barcelona
Descargar PDF
Idiomas
Reumatología Clínica
Opciones de artículo
Herramientas
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?